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The interaction of long and short waves in a rarefied monodisperse mixture of a weakly compressible liquid containing bubbles 
of gas is considered. It is shown that the equations describing the dynamics of the perturbations in the bubbly liquid admit of 
the existence of short-wave-long-wave Benney-Zakharov resonance. A special modification of the multiple-scale method is 
employed to derive the interaction equations. In the non-resonant case, the interaction equations reduce to the non-linear 
Schr6dinger equation in the form of the short-wave envelope while, in the resonance case, they reduce to the well-known system 
of Zakharov equations. The characteristics of long-wave-short-wave interaction in a bubbly liquid lie in the fact that, at certain 
values of the frequency of the short wave, the interaction coefficients vanish ("interaction degeneracy"). A class of new interaction 
models is constructed in the case of "degeneracy". Degenerate resonance interaction in a bubbly liquid is investigated numerically 
using these models. © 2000 Elsevier Science Ltd. All rights reserved. 

It is well known that the independent propagation of long and short waves on the water surface and in a 
collision-free plasma at fairly long times can be described, respectively, by the Korteveg--de Vries [1, 2] 
equation 

~L 3L 2 O3L 
¥ + o - g - - x  + x  = 0 

and the non-linear Schr6dinger equation [3, 4] 

• OS 32S 2 
,~-t +13-~-+T I SI S = 0  

(L is the profile of the long wave and S is the envelope of the short waves). 
When the amplitude of the short-wave signal varies with time and in space, interaction can occur between the 

long wave and the envelope of the short waves. The mechanism of "long-wave-short-wave" interaction was 
investigated for the first time in [5] when studying waves on the surface of water. A general theory of the interaction 
between long and short waves was proposed in [6], where a new form of resonance between three waves with wave 
numbers k~, k2, k3 and frequencies cot, o32, o)3 wasconsidered. Actually, by choosing 

k l = k s + E k ' ,  k 2 = k ~ . - E k '  k 3 = - k l = 2 ~ ' ,  k~. k'=O(1), e ,~ l  

the resonance condition kl = k2 + k3, o31 = o32 + o33 can be reduced to the form do3s/dk~ = o3t/kt. If ks and % are 
the wave number and frequency of the short wave and kt and cot are the wave number and frequency of the long 
wave, the condition which has been obtained assumes that the group velocity of the short wave cg(k~) = do3~/dks 
and the phase velocity of the long wave cp(kl) = o3t/kt are equal (long-wave-short-wave resonance). • 

The equations of long-wave-short-wave resonant interaction 

3L OlSI 2 ^ .3S ~2S _ 

T t  = 

were proposed for the first time by Zakharov to describe the interaction of Langmuir oscillations with ionic sound 
in a plasma [4]. These universal equations were obtained for waves on the water surface [7] and for the model of 
a molecular chain in the form of an u-helix [8]. 

Due to the presence of gas bubbles, the dispersion curve for a bubbly liquid separates into two branches, a low- 
frequency branch and a high-frequency branch [9]. The mutual propagation of long-wave and short-wave 
perturbations is therefore possible in such a medium. However, investigations, using the theory of non-linear waves, 
of liquids containing gas bubbles have been confined to an independent treatment of the long and short waves. In 
particular, a Korteveg--de Vries equation was obtained in [10, 11] to describe the evolution of long-wave 
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perturbations in liquids with bubbles of adiabatic gas. It has been shown [12] that the evolution of quasi- 
monochromatic wave packets of short waves in polydisperse bubbly liquids can be described by the non-linear 
SchrOdinger equation. Equations have been constructed for the modulations of the short waves in the case of a 
bubbly mixture with an incompressible carrier phase [13] and, also, for the case when interphase heat exchange is 
taken into account [14]. The papers [15, 16] should also be noted in which models of the generation of the 
subharmonics of short waves were proposed and the effects of parametric amplification associated with them and 
the generation of sound in liquids containing gas bubble were analysed. 

In this paper, the interaction of one-dimensional long-wave and short-wave perturbations in a monodisperse 
bubbly liquid is investigated for the first time. 

1. BASIC E Q U A T I O N S  

The one-dimensional flow of an ideal, slightly compressible liquid containing a small amount of 
spherical gas bubbles, under conditions where heat dissipation and capillary effects can be neglected, 
is described by the equations [9, 17, 18] 

dp 3v dv bp 
¥+PTx =o, 

d2a 3(da'~ 2] 

p,ta + 7t.-D-J ]= p,- p. 

p=p t (1 -ag ) ,  ag =47r.a3n, 
3 

dn Do 
- - +  =0  dt n ~x  

Pt-Pt0 : P - P o  (1.1) 

P0 

Here d/dt = O/Ot + oO/~x is a substantive derivative with respect to time,p, p, t~ are the pressure, density 
and velocity of the mixture, p/is the true density of the liquid, Ct is the speed of sound in the pure liquid, 
pg, a s and a are the pressure, the volume content and radius of the bubbles, n is the number of bubbles 
per unit volume of the mixture, × is the polytropy exponent, and a zero subscript denotes the unperturbed' 
state of the mixture. 

Changing to the dimensionless quantities 

~ =  a -1, ,o=--~-P -1, ~ =  P-Po  v t x m , v'-=m, ? = - - ,  ~ = - -  
ao Po p, v, t, L~ 

p, = p0otg0, v,  = ~[-~Po t, - ao,] p° , = a° 

(the bar is subsequently omitted) and neglecting quantities of the order of the volume gas content 
compared with unit, system (1.1) can be reduced to the form [12] 
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~2 O ~)2p . d2a  3 ( d a ~ 2 _ ( l + a ) _ 3 X + p + l =  0 
Ot2 - ~-~-T =0,  ( l + a ) ~ t 2 + 2 \ d t )  (1.2) 

p - l - b 2 p + ( l + a )  3 =0, b=4po(Pto%oC?)-t 
A linear analysis of system (1.2) shows that its dispersion relation has two branches 

to2. (k) = 2 {3x + (k 2 + 3)b -2 + 413x - (k 2 + 3)b -2 ]2 + 36×b-2 }. (1.3) 

The dispersion curve (1.3) is shown in Fig. 1 for a mixture of water with air bubbles under normal 
conditions (P0 = 0.1 MPa and Pt0 = 103 kg/m3) and a volume gas content agO = 1.1 × 10 -4. 

The long-wave and short-wave asymptotic forms of dispersion relation (1.3) are as follows: 

_ 5 / ( 6 × 2 )  t o t = % k t - x k ~ + O ( k  5) for kt--*0; X - c ,  

where 

to,. = c /k  s + O(k~. j) for k s --+ 
(1.4) 

C e = O } l / k  I Ik,_.+o= ~/(b 2 +X-I) -1 , C.f =dm.,.Idk, I k , ~ =  b -' (1.5) 

are the equilibrium and frozen speed of sound in the mixture. 
The dispersion relation (1.3) admits of the existence of long-wave-short-wave Benney-Zakharov 

resonance. Actually, since the group velocity of the short wave 

(1.6) Cg = am s I dk s = k.,.o)7.' (m.~ - 3x)(2b2to~ - 3×c~ 2 - k.~)-' 

where ks tends to zero is an infinitesimal quantity, and it follows from (1.5) that cf > Ce, a k, = ksr is found 
for any sufficiently small kt = ktr such that the long-wave-short-wave Benney-Zakharov resonance 
condition (Fig. 1) 

cg (ksr ) = ct, (ktr) (1.7) 

is satisfied. 
In the case of infinitely long waves (k I --+ 0), this condition reduces to the equality 

C g ( k s r )  = C e (1.8) 

2. T H E  M E T H O D  OF M U L T I P L E  S C A L E S  

The method of multiple scales [19] is used to derive the equations for the interaction of long and 
short waves. This method assumes that the solution z = (a,p,  p) of system (1.1) is expanded in powers 
of a certain small parameter c (which characterizes the amplitude of a perturbation) into long-wave 
and short-wave components 

Z = g  / Y. £m-lz(n0)+ss y~ 8(m-l)n+(n-I)S[z~)einO+C.C. ] 
m;~l m,n~l 

(2.1) 

and that fast (to, x0) and slow (tn, xn) = en(t0, x0) (n = 1, 2 . . . .  ) variables are introduced with the 
substitutions 

0 b _ , a  b a 0 
7 - ' - '>7 - -+  2, 8 ~-7~'.' ~xx -'> + y' e" (2.2) 
Ot Oto n;)l OX 0 n>~l ~X n 

Here, O = k~x 0 - cost 0 is the phase of the short wave, z (°), z(~)(m, n = 1, 2 . . . .  ) are the long-wave and 
short-wave components of the solution, which depend solely on the slow variables, and I and s are certain 
numbers which, together with c characterize the degree of smallness of the amplitudes of the perturbations. 
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3. N O N - R E S O N A N T  AND R E S O N A N T  I N T E R A C T I O N  

In order to construct a model of the non-resonant interaction, we put (l, s) = (2, 1), substitute (2.1) 
and (2.2) into (1.2) and split the resulting expression into harmonics. We restrict ourselves to the order 
of(0)magmtude" I~ 4 for the zeroth harmonic and e3 for the 0)first harmonic and introduce the notation L = 
Pl for the pressure profile in the long wave and S = Pl for the envelope of the pressure of the short 
wave. Then, changing to a system of coordinates which moves in a time tl with the group velocity of 
the short wave cs(ks), we obtain the equations for the non-resonant interaction 

[z .bS ~ ~2S 12 2, S = 8 ~ S  (3.1) 
Cg - -  C e 

Here 

= 

y =  

L=Lo( 'q l )+Lo(r l2)+~({) ,  x=t2,  ~=Xl-Cgtl, Tll,2=Xl+Cetl (3.2) 
2 2 

c~cg [tO 2 -9×(×+1)]  
t~= ~(t.02 _ 3~) 2 . 

C' ¢ 1 [3= -u [1 + ~ { 4 k ,  ms + c g ( k  2 + 3(l+×b2)_6b2m~)} 
2k  s [ m s - 5× 

Cgm~ [m~ - 9×(× + 1)] (3.3) 
2xks(m ~ - 3X) 2 . 

[m~ - 3×(3~ + 1)]8 Cg (b2m~ - k~) 
4ksm s (03 s - % 3  [-ms 4 + 27×2 (x + l)m~ + 27× 2 (x + 1)2 ] 

(L0 is the initial distribution of the long wave), Cg is determined from (1.6) and Ce is determined from 
(1.5). 

The resulting model describes the formation of an inertialess long wave with a wave packet of short 
waves and their subsequent interaction. 

The system of equations (3.1) reduces to a non-linear Schr6dinger equation in the function S = S 
exp{-iSO0x} 

• 3S ~ 323 , 12 y, ct8 (3.4) 13 3=0, =V-c _c 
In the case of long-wave-short-wave resonance c ,  = % the first equation of (3.1) no longer holds 

since the coefficient ot(c 2 - c2) -a becomes infinite. T]ais means that resonance interaction requires the 
choice of other values of (l, s). Such a choice can be (l, s) = (2.3/2). 

We shall assume that all the unknowns depend solely on the variables ~ = xl - c~tl, 4 = x2 - c~t2, 
x = t2. We substitute expressions (2.1) and (2.2) into system (1.2) with the above mentioned choice of 
(l, s) and split the resulting expression into harmonics, taking account of terms up to the order of 
magnitude of ~5 in the case of the zeroth harmonic and e7/2 in the case of the first harmonic. Then, 
satisfying the resonance condition (1.8), we obtain the system of Zakharov equations [4] 

3 L +  o~ 0IS[  2 =0,  .0S~ "-"---~-"02S 
~"C 2C e ~ l ~'~ + l') O~ v = SLS (3.5) 

Here, L = p~O), S = p~l), and the coefficients ct, 13 and 8 are determined from (3.3). 

4. D E G E N E R A T I O N  OF T H E  I N T E R A C T I O N  

Analysis of the coefficients (3.3) shows that the interaction coefficients ot and 8 simultaneously vanish 
subject to the condition 

2 = 9~(x+ 1) (4.1) ms 
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In this case, the interaction of the short and long waves "degenerates" since Eqs (3.1) and (3.2) become 
uncoupled and take the form 

.3S ()2S 2 
L=Lo( rh)+Lo( r l2 ) ,  ~ - + I 3 ~ - - ~ + ~ ' I S l  s = 0  (4.2) 

The dependence of  the coefficients ct and 8 on the dimensionless wave number ks is shown in 
Fig. 2 for a mixture with air bubbles under normal conditions and a volume gas concentration ago = 
2.2 x 10 -4. The open circle is the point of degeneracy. 

In the non-resonant case, degeneracy leads to a state of affairs where short-wave perturbations will 
initiate a long wave with a significantly smaller amplitude. This follows from the fact that the associated 
equations for the interaction can be obtained if one takes the degrees of smallness (l, s) = (3, 1), instead 
of (2, 1), when substituting expansion (2.1) and (2.2) into Eqs (1.2). On changing the coordinates 
xl ~ ~ = xl - cgq and.using the degeneracy condition (4.1), these equations take the form 

. L ( s3S*  . 3S~  .3S , 3 2 S  [  -sat 2 s=0 (4.3) 

L=Lo(I"II)+Lo(I"I2)+(D(~), S=S('~,~), 'C=t2, I"I1.2=XI+_Cetl 

~, = (× + 1)Y2c2c~ /(3×~(3× + 2) 2) 

(the coefficient t is always non-zero). 
In the case of degeneracy of the resonance interaction, that is, when the resonance condition (1.8) 

and the degeneracy condition (4.1) are satisfied, the system of interaction equations becomes a single 
parameter equation and is solely determined by the parameter ×. First, this follows from degeneracy 
condition (4.1), according to which the frequency O~s~ depends only on ×. Second, when the degeneracy 
condition (4.1) is substituted into dispersion relation (1.3), a relation is obtained which does not contain 
~0s~ and which relates the quantities ksr, b and ×. Together with resonance condition (1.8), in which 
condition (4.1) is also taken into account, this relation constitutes a system of two algebraic equations 
in ks× and b with the parameter ×. Hence, the single free parameter × remains, since the other three 
(co~, k~r, b) are completely expressed in terms of it 

~/3×(× + 1)+ I 3(×+1) b = (4.4) 
¢o.~ = 3.,]-~X--~, k,~ = 4r~(3× + 2) '  ×(3× + 2) 

If one considers a mixture of water with air bubbles of radius a0 = 1 at a pressure P0 = 0, 1 MPa 
as the bubbly liquid, then degeneracy of the resonant interaction will occur when a perturbation 
with a frequency of 985 kHz is initiated, subject to the condition that the volume gas content 

~ 3 x 1 0  -4 (Xg0~ 
We will now consider how resonant interaction equations are modified in the case of degeneracy for 

different sets of the numbers I and s. 
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The case (l, s) = (2, 3/2). When condition (4.4) is satisfied, the Zakharov equations (3.5) reduce to 
a system of linear uncoupled equations 

DL 0, .DS ,D2S = ,-~-x + p 3--~- = 0 (4.5) 
D--T 

from which the invariance of the initial profile of the long wave with the passage of time follows. The 
second equation of (4.5) is the dispersion equation with a dispersion relation of the form f~2 = 132/(4. 
Due to dispersion of the wave, the packet of the envelope becomes blurred with the passage of time. 

System (4.5) admits of a spatially homogeneous solution L = L0, S = So. Suppose that we specify 
certain perturbations to these ~olutions at the initial instant of time. It then follows from Eqs (4.5) that 
the perturbations of L will propagate without any change in their shape and amplitude but, in the case 
of S, the perturbations will become blurred over the whole space, decreasing.in amplitude for long times. 
The amplitude of the wave packet of the short waves will decrease as 1Nx, that is, in a time t 3 = izx 
the amplitude of the perturbations of the short-wave envelope will be a quantity of the order of e 1/2. 
Because of the decrease in this amplitude, the contribution from the interaction terms of the next order 
in e increases. 

When substituting expressions (2.1) and .(2.2) into system (1.2), we take into account all terms up to 
order e 6 for the zeroth harmonic and e 9/2 for the first harmonic. We shall assume that L = p t  °), 
Li = p2 (°) and S = pt  j), S1 = p~)  are functions of ~ = x~ - Cgh, x = t2 and that Lj and Si, by analogy 
with L and S, evolve during a time x in accordance with (4.5), that is, the equations 

DLI --= O, ' DSI ~ D2SI 
D'~ ,--~-x + p - ~ -  =0 (4.6) 

hold. We also put p~0) = L2({) and p~l) = S2(g). Then, using relations (4.4) and (4.5), we obtain the 
system of equations 

r De r .  a S_sa S*]] 

DS .,,D2S ( 0aS • 2 • .DS _DL~ 
ar s - 

- -  

All the coefficients of  system (4.7) depend solely on the parameter ~ and are positive when K I> 1 

×(3× + 2) ×(3× + 2) 3 
Cg = C  e = 1 ~ =  

(3x+ 1)(×+ 1)N ' 4(3×+ 1)3(×+ 1)N 

= (27× 3 +18× 2 +18x+4)  
6(3× + 1)4(3× + 2)(× + 1) ~ 

= 3×~(3x+ 2) (3x 2 + 3 x + 2 )  
2(3×+ 1)3(x+ 1) 3/2 

×3(3×+2) (81x 4 +54x 3 +81~ 2 + 6 0 x +  28) (4.8) 
r I = 6(3×+ 1)5(x + 1) s/2 

(× + 1) ~ x3(3× + 2) 5 

3' = 12×~(3×+ 1)(3×+ 2) 2 (9× -  2), Z = 6(3×+ 1)5(x+ 1) ~ 

= 2v = ~(3× + 2) 
(3~+ 1)2(~ + 1) t/2 

Note that the coefficient of the linear term of the first equation of (4.7), ~ is identical with the 
coefficient of the second term of the expansion of the low-frequency branch of dispersion relation (1.3) 
in the long-wave region (1.4)), while the coefficient of the linear term of the second equation 
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1 d3Os 
11= 

6 dk. 3 

If we put S = 0, then the system of equations (4.7) reduces to the Korteveg-de Vries equation 

aL 3L 2 ~3L 
'a,t. I + 0 - ~ -  + X ~--~" = 0 (4.9) 

which describes the propagation of long-wave perturbations in a bubbly liquid. Here, xl = t3 = e~. 

The case (l, s) = (1, 1). With this choice, in the case of degeneracy of resonant interaction (4, 4) a 
non-trivial system of equations (of order e 2 for the first harmonic and c 4 for the zeroth approximation 
also arises). As is usually done, we will assume that 

p~O) = L(x,~), p2 (°) = Ll('r,~) and p[I) = S('~,~), p2 (l) = SI('c,~) 

We shall also assume that L 1 satisfies the equation 

a~  ^ aLL 1 
a't: + 2G- -~ -  = 0 

The following interaction model then holds 

aL aL 2 [ a3L aL 3 aLISI 2 

Here 

iX(S *a2S Sa2S*)]_ 

.aS ~a2S . ,aS  . .aL 

(4.10) 

g = (3× + 2) 2 

36×N(3x + 1)(~+ 1) g 

(3x+2)3 (2794 + 62×3 + 45×2 + 7×_ 2) 
q - 36(3× + 1) 5 (× + 1) ~ 

1 (27× 3 + 36× 2 - 4) 
P = 6(3x + 1)5(3× + 2)(× + 1) ½ 

The remaining coefficients are determined from (4.8). 
If no account is taken of terms of order e in the first equation of (4.10), the interaction equations 

will consist of the Hopf equation for L and a non-linear SchrOdinger equation with interaction terms 
for S 

aL aL 2 .aS ^a2S $2S. as aL - 2 -=° '  + =i la .L-~+ivS~+SL S (4.11) 

The Hopf  equation (the first equation of (4.11)) describes the formation of a shock wave from the 
initially smooth profile. Hence, if no account is taken of the term of order e in the first equation of 
(4.10), the derivative a l L  with respect to ~ becomes infinite at a certain instant of time. Since, during 
the formation of a shock wave, terms of order e, containing the derivatives of L and S with respect to 
~, become large, they begin to have a substantial effect on the dynamics of the long-wave-short-wave 
interaction. 
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5. N U M E R I C A L  I N V E S T I G A T I O N  O F  D E G E N E R A T E  
R E S O N A N C E  I N T E R A C T I O N  

The case (l, s) = (2, 3/2). The system of equations (4.7) is integrated numerically using an explicit three-layer 
scheme with a fourth order of approximation with respect to the coordinate proposed earlier [20] for the numerical 
solution of the Korteveg-de Vries equation. Periodic boundary conditions and an initial condition of the form 

L=Lo(I  +ALl1 -cos~]), S=So  (5.1) 

where L0 = 5, AL = 0.25, So = 5, are used in the integration. 
The distributions of the envelope of the short-wave perturbation [Ps[ and the profile of the long-wave perturbation 

PL (e = 0.1) with respect to the spatial variable x for water with air bubbles of radius a 0 = 1 mm under normal 
conditions are shown in Fig. 3. Moreover, the parameters of the mixture satisfy the condition of resonant degeneracy 
(f2s = 55 kHz and ago = 3.02 x 10-4). Curves 1-7 correspond to the following instants of time: t = 0.019 s, 0.171 s, 
0.209 s, 0.294 s, 0.437 s, 0.532s and 0.722 s. It is clear that a sinusoidal profile is formed in the case of the envelope 
of the short-wave perturbation. The amplitude of this profile increases up to the instant of time t = 0.294 s and then 
sharply decreases at t = 0.437 s, and, after a certain time, it increases again, attaining a maximum value at t = 0.722 s 
(Fig. 3a). In the case of sinusoidal initial conditions, the short wave has no action on the long wave and the long- 
wave perturbation propagates in accordance with the Korteveg--de Vries equation (4.9). It is important to note that 
an increase in the amplitude of the short wave occurs during the formation of the second hump in the profile of the 
long wave (the two-soliton solution of the Korteveg--de Vries equation), and a decrease occurs when it disappear 
(Fig. 3b). It can be concluded from this that a considerable return flow of energy from the long wave to the short 
wave is observed during the formation of the two-humped profile, on account of which, in spite of the strong dispersion, 
the amplitude of the short wave increases. On passing through periods of rise and fall, this amplitude increases on 
the whole which is seen, for example, when the short-wave distributions for the times t = 0.209 s and t = 0.722 s 
(curves 3 and 7 in Fig. 3a) are compared. The essential smallness and transient nature of the non-linear distortions 
of the short-wave profile should be noted. They manifest themselves most strongly in the reduction in the amplitude 
of the short wave (see Fig. 4, where curves 1-4 correspond to t = 0.4557 s, 0.4652 s, 0.4747 s and 0.4852 s). 

The results obtained can be given the following physical interpretation. We assume that high-frequency oscillations 
as well as low-frequency oscillations are excited in a bubbly liquid. In the general case, these perturbations will 
propagate in the medium in the form of a wave packet of short waves and a long wave. When the long-wave-short- 
wave resonance condition is satisfied, interaction occurs which obeys the Zakharov equation (3.5). It is well known 
that, under the above-mentioned initial-boundary conditions, this system describes the formation of a soliton 
structure [21]. Hence, at resonance, the form of the short wave is subject to significant non-linear distortions. 
However, an isolated frequency of the short wave exists in a bubbly liquid, that is, the frequency of the "degeneracy" 
at which the resonance interaction has a completely different character. First, the long wave propagates 
independently of the short wave and obeys the Korteveg--de Vries equation. Second, due to the action of the long 
wave on the short wave, a sinusoidal profile of the short wave envelope is formed which, as it evolves, only experiences 
insignificant and transient non-linear distortions. This means that practically all the energy of the short wave will 
be contained in its first harmonic. Third, due to the flow of energy from the long wave to the short wave, there is 
an increase in the amplitude of the short wave. 

The case (l, s) = (1, 1). Equations (4.10) were integrated numerically using the same numerical scheme and 
boundary conditions as in the case of Eqs (4.7). The initial condition was taken in the form (5.1), where L0 = 5, 
AL = 0.05, S0 = 5. 
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The distribution of the long-wave perturbation PL with respect to x at the instants of time t = 0 s, 0.133 s and 
0.285 s (curves 1, 2 and 3, respectively) is shown in Fig. 5 (for the same values of the parameters as in the case of 
model (4.7)). It is clear that the long wave propagates with its profile becoming steeper since, when no account is 
taken of terms of order e, the equation for the long wave is the Hopf equation (the first equation of (4.11)). 

The subsequent evolution of the long-wave and short-wave perturbations when ~ = 0.1 (the thick curve) and 
= 0.01 (the thin curve) is shown in a dimensionless form in Figs 6 and 7. A shock profile is not formed in the 

case of the long wave. This is due to the contribution of terms of order e in the first equation of (4.10). Here, if 
short-wave perturbations are not generated (So = 0), the long-wave will propagate in the form of an asymptotically 
stable wave (the dashed curve in Fig. 6) In the case of a non-zero short-wave amplitude (So/> 0), disruption of 
the long-wave profile occurs. As e becomes smaller, this disruption becomes more and more significant. A similar 
process is also observed in the case of the short wave (Fig. 7). 

Hence, long-wave-short-wave interaction in the case of resonance degeneracy and equality of the orders of 
smallnesses of the long-wave and short-wave perturbations (l, s = 1.1) leads to the development of non-linear 
instability. 
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